ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Toshihiko Yamanishi, Mikio Enoeda, Kenji Okuno, Robert H. Sherman
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 232-243
Technical Paper | Fusion Fuel Cycle | doi.org/10.13182/FST96-A30710
Articles are hosted by Taylor and Francis Online.
A control method was proposed for the cryogenic distillation column with a feedback stream. The top and bottom flow rates of the column are adjusted for the variation of external feed composition to control product purity. The flow rate of the side stream and the power of the reboiler heater are promptly and linearly changed with the corresponding variation of external feed flow rate. Ordinary columns with no feedback stream are first-order lag systems for the case where the top flow rate is chosen as a manipulated variable. On the other hand, the column with a feedback stream is a second-order lag system even in this case. The parameter-setting method of the proportional-integral (PI) controller was proposed to predict the unstable region in the control of the column. The method can also be applied to the case where the measurement of the controlled variable is accompanied by a long time lag. However, the longer time lag requires a larger integral time, and the larger integral time brings a larger overshoot and slower damping for the controlled variable. For this case, the promptness of the control can be improved by introducing the PI derivative controller.