ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Toshihiko Yamanishi, Mikio Enoeda, Kenji Okuno, Robert H. Sherman
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 232-243
Technical Paper | Fusion Fuel Cycle | doi.org/10.13182/FST96-A30710
Articles are hosted by Taylor and Francis Online.
A control method was proposed for the cryogenic distillation column with a feedback stream. The top and bottom flow rates of the column are adjusted for the variation of external feed composition to control product purity. The flow rate of the side stream and the power of the reboiler heater are promptly and linearly changed with the corresponding variation of external feed flow rate. Ordinary columns with no feedback stream are first-order lag systems for the case where the top flow rate is chosen as a manipulated variable. On the other hand, the column with a feedback stream is a second-order lag system even in this case. The parameter-setting method of the proportional-integral (PI) controller was proposed to predict the unstable region in the control of the column. The method can also be applied to the case where the measurement of the controlled variable is accompanied by a long time lag. However, the longer time lag requires a larger integral time, and the larger integral time brings a larger overshoot and slower damping for the controlled variable. For this case, the promptness of the control can be improved by introducing the PI derivative controller.