ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Dennis L. Youchison, Radmir N. Guiniatouline, Robert D. Watson, Jimmie M. McDonald, David S. Walsh, V. I. Beloturov, Igor V. Mazul, Andrey P. Zakharov, Bernice E. Mills, Dale R. Boehme, Vladislav Ilich Savenko
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 599-614
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30701
Articles are hosted by Taylor and Francis Online.
Thermal response and thermal fatigue tests of four 5-mm-thick beryllium tiles on a Russian Federation International Thermonuclear Experimental Reactor (ITER)-relevant divertor mock-up were completed on the electron beam test system at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an oxygen-free high-conductivity copper saddle-block and a dispersion-strengthened copper alloy tube containing a copper porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m2 and surface temperatures near 300°C using 1.4 MPa water at 5 m/s flow velocity and an inlet temperature of 8 to 15°C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m2 and surface temperatures up to 690°C before debonding at 10 MW/m2. A second tile debonded in 25 to 30 cycles at <0.5 MW/m2. However, a third tile debonded after 9200 thermal fatigue cycles at 5 MW/m2, while another debonded after 6800 cycles. Posttest surface analysis indicated that fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. It appears that microcracks growing at the diffusion bond produced the observed gradual temperature increases during thermal cycling. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER-relevant conditions. However, the reliability of the diffusion-bonded joint remains a serious issue.