ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dennis L. Youchison, Radmir N. Guiniatouline, Robert D. Watson, Jimmie M. McDonald, David S. Walsh, V. I. Beloturov, Igor V. Mazul, Andrey P. Zakharov, Bernice E. Mills, Dale R. Boehme, Vladislav Ilich Savenko
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 599-614
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30701
Articles are hosted by Taylor and Francis Online.
Thermal response and thermal fatigue tests of four 5-mm-thick beryllium tiles on a Russian Federation International Thermonuclear Experimental Reactor (ITER)-relevant divertor mock-up were completed on the electron beam test system at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an oxygen-free high-conductivity copper saddle-block and a dispersion-strengthened copper alloy tube containing a copper porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m2 and surface temperatures near 300°C using 1.4 MPa water at 5 m/s flow velocity and an inlet temperature of 8 to 15°C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m2 and surface temperatures up to 690°C before debonding at 10 MW/m2. A second tile debonded in 25 to 30 cycles at <0.5 MW/m2. However, a third tile debonded after 9200 thermal fatigue cycles at 5 MW/m2, while another debonded after 6800 cycles. Posttest surface analysis indicated that fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. It appears that microcracks growing at the diffusion bond produced the observed gradual temperature increases during thermal cycling. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER-relevant conditions. However, the reliability of the diffusion-bonded joint remains a serious issue.