ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hans-Dieter Falter, Ernest Thompson
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 584-595
Technical Paper | Plasma Heating System | doi.org/10.13182/FST96-A30700
Articles are hosted by Taylor and Francis Online.
Rectangular Hypervapotron beam-stopping elements made from Cu-Cr-Zr have been used in the Joint European Torus (JET) beam injectors to dissipate up to 100 MW of power. Experience over more than 10 yr is outstanding with not a single failure. At the flow velocities used in the Hypervapotron elements of the JET injectors, the turbulence created by the fins dominates the heat transfer, and the Hypervapotron mechanism is of secondary importance. The main advantage of the Hypervapotron is the geometrical flexibility. The surface can be shaped freely as required without compromising on either heat transfer or total power-handling capability. Flow velocity and flow rate can be independently adjusted to requirements. Peak power densities up to 30 MW/m2 were removed at a flow velocity of 7 m/s and a pressure drop of 0.25 MPa/m. Flow parameters were as follows: velocity ≤11 m/s, inlet pressure ≤1 MPa, and inlet temperature ≤50°C.