ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. E. Nygren, J. D. Miller
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 529-544
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30696
Articles are hosted by Taylor and Francis Online.
The Phase-III Outboard Pump Limiter is a heat sink made of pyrolytic graphite armor brazed to water-cooled copper tubes. Around the inner wall of the tube wall, some of the water can be in the subcooled boiling regime. The central issue analyzed here is how the heat flow in the tube changes when the thermal resistance along the heated portion of the tube is redistributed. Cracks or braze flaws in the joint between the tile and tube cause this redistribution. Severe cracks or flaws reduce the power-handling capability of this assembly because the local peak heat fluxes increase and, for a given critical heat flux (CHF), the safety margin decreases. There were some surprises. The increase in local peak heat flux for the most common type of flaw encountered in the fabrication of this limiter was negligible up to a flaw size of ∼50%. The examples presented are intended as a case study that illuminates the more general problem of how correlations for heat transfer and for CHF developed for uniform circumferential heating are applied to a case of one-sided heating.