ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Diethelm Schroeder-Richter, Sabiha Yildiz
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 512-518
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30694
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) is studied experimentally in vertical tubes heated directly using power current (direct current 2500 A, 15 V) and cooled with water at a low mass flow rate (0 to 0 2 Mg/m2·s) and at low pressure (0.1 to 0.8 MPa). A smooth tube and a tube with a porous coating layer sintered onto the inner surface were used. The tube and the porous coating layer are both made from INCONEL-600. The results (so far at moderate heat fluxes) are compared with each other and with correlations by Katto and by Weber. Enhancement of heat transfer was determined as well as a negative effect of the porous coating below the expected value of CHF. It seems that a disadvantage of the coated tube corresponds to the apparently annular flow regime alone; whereas, the CHFs can be enhanced by the porous layer as long as the bubbly flow pattern is maintained up to the location of maximum heat flux. Obviously, the latter situation is established during high-heat-flux conditions, i.e., at high subcooling and high flow rate, which are the classical design characteristics of high-heat-flux components infusion reactors.