ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Diethelm Schroeder-Richter
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 468-486
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30691
Articles are hosted by Taylor and Francis Online.
On the basis of a new hypothesis of thermodynamic states (the superheated wall layer is not metastable but saturated at locally elevated pressure), an analytical estimation is presented of the whole boiling curve [except critical heat flux (CHF), but fixed at this point, known by experiments or correlation]. The curvature of the boiling curve (bubbly flow) is deduced from thermodynamics of irreversible processes. The wall temperature corresponding to departure from nucleate boiling is calculated from balances of momentum at the interfaces, based on the assumption that the speed of sound may be a limit for maximum evaporation mass flux and thereby heat flux, i.e., CHF. Heat flux during transition boiling is determined from balance of energy at the rewetting front. At the Leidenfrost point, a minimum heat flux is neglected. Thus, Leidenfrost temperature, as well as wall temperature at CHF, can be calculated analytically without using empirical coefficients. Heat flux of bubbly flow and transition boiling can be matched at any empirical CHF point. All these results are determined from properties of state alone, i.e., the models can be verified for all fluids including water and liquid metals (so far at moderate heat fluxes). Especially the latter two fluids are of interest for high-heat-flux application, and the precondition of low void fraction is expected to be fulfilled.