ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
John H. Rosenfeld, James E. Lindemuth, Mark T. North, Robert D. Watson, Dennis L. Youchison, Richard H. Goulding
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 449-458
Technical Paper | First-Wall Technology | doi.org/10.13182/FST96-A30689
Articles are hosted by Taylor and Francis Online.
Several types of porous media heat exchangers are being evaluated for use infusion applications. Broadly, these devices can be classified as capillary-pumped (heat pipes) or mechanically-pumped heat exchangers. Monel/water thermosyphon heat pipes with a porous metal wick are being evaluated for use in Faraday shields. A subscale prototype has been fabricated, and initial tests at Oak Ridge National Laboratory have shown favorable results. Alkali metal heat pipes have demonstrated absorbed heat flux capability of over 1000 MW/m2. An advanced gyrotron microwave cavity is being developed that uses water cooling in a mechanically-pumped copper porous metal heat exchanger. Tests on a prototype demonstrated absorbed heat flux capability in excess of 100 MW/m2. Porous metal heat exchangers with helium, water, or liquid metal coolants are being evaluated for plasma-facing component cooling. Tests on a helium/copper porous metal heat exchanger demonstrated absorbed heat flux capability in excess of 15 MW/m2. Applications, conceptual designs, fabricated hardware, and test results are summarized.