ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tore Supra Team
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 417-448
Technical Paper | First-Wall Technology | doi.org/10.13182/FST96-A30688
Articles are hosted by Taylor and Francis Online.
In view of high-power, long-pulse steady-state operation, Tore Supra has incorporated in its design the active control of heat and particles in a realistic environment. In the early experimental phase of Tore Supra, the first generation of plasma-facing components was tested, and these tests provided much physics and technological information and illuminated various operational difficulties. In particular, these experiments revealed the weakness of the graphite-to-metal brazing process originally adopted for actively cooled high-heat-flux components. Consequently, a new inner-wall technology was developed in 1994 and is to be tested in 1995–1996 with a totally rebuilt 40-deg toroidal sector. A carbon-fiber—reinforced carbon-metal compound is based on the newest brazing technology and rigorous quality control. Components such as the toroidal pump limiter and the guard limiters of plasma-heating antennas are being developed in the same way. For structures where brazing is difficult, boron carbide-coated components have been developed and installed in Tore Supra. For lower heat fluxes, a bolted concept has been designed and tested. The influence of inner-first-wall misalignment in Tore Supra on the power exhaust limitation of brazed components has been studied. Results from the technological development for the different power exhaust systems and the associated experimental knowledge obtained during plasma operation in Tore Supra are presented.