ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Honda, T. Okazaki, K. Maki, T. Uda, Y. Seki, I. Aoki, T. Kunugi
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 116-125
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST96-A30661
Articles are hosted by Taylor and Francis Online.
Ex-vessel loss-of-coolant accidents (LOCAs) in a fusion reactor have been analyzed to investigate the possibility of passive plasma shutdown. For this purpose, a hybrid code of the plasma dynamics and thermal characteristics of the reactor structures, which has been modified to include the impurity emission from plasma-facing components (PFCs), has been developed. Ex-vessel LOCAs of the cooling system during the ignition operation in the International Thermonuclear Experimental Reactor (ITER), in which graphite PFCs were employed in conceptual design activity, were assumed. When double-ended break occurs at the cold leg of the divertor cooling system, the copper cooling tube begins to melt within 3 s after the LOCA, even though the plasma is passively shut down at ∼4 s. An active plasma shutdown system will be needed for such rapid transient accidents. On the other hand, when a small (1%) break LOCA occurs there, the plasma is passively shut down at ∼36 s, which happens before the copper cooling tube begins to melt. When the double-ended break LOCA occurs at the cold leg of the first-wall cooling system, there is enough time (∼100 s) to shut down the plasma with a controllable method before the reactor structures are damaged.