ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Donato, R. Andreani
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 58-72
Technical Paper | Materials Engineering | doi.org/10.13182/FST96-A30656
Articles are hosted by Taylor and Francis Online.
The design and construction of a fusion reactor represent a very difficult challenge from the viewpoint of developing materials that will allow fusion to be realized as an economic, safe, and environmentally acceptable energy source. In fact, the operating conditions of fusion reactor components will require the use of materials capable of safely sustaining thermal, mechanical, and irradiation loads never met in the past while at the same time producing negligible amounts of radioactivity and radioactive waste. An overview is presented of the development status and the perspectives of austenitic stainless steels, martensitic stainless steels, vanadium alloys, and fiber-reinforced ceramic composites (SiC/SiC), which are the materials currently being investigated for fusion reactor application. Limitations and possibilities of their use with reference to both the next experimental reactor, the International Thermonuclear Experimental Reactor (ITER), and the future Demonstration Reactor (DEMO) are examined. While for the experimental reactor ITER, research is directed toward the optimization of existing materials like austenitic steels, for future commercial reactors, ceramic matrix composites appear to offer enormous potential as a structural material because of their high-temperature properties, low density, low thermal expansion, and very low neutron activation.