ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Z. Youssef, M. A. Abdou, A. Kumar, Li Zhang, K. Kosako, Y. Oyama, F. Maekawa, Y. Ikeda, C. Konno, H. Maekawa
Fusion Science and Technology | Volume 28 | Number 2 | September 1995 | Pages 320-346
Technical Paper | Fusion Neutronics Integral Experiments — Part II / Blanket Engineering | doi.org/10.13182/FST95-A30649
Articles are hosted by Taylor and Francis Online.
Experimental simulation to a line source has been realized at the Japan Atomic Energy Research Institute (JAERI) Fusion Neutronics Source within the U.S. Department of Energy/JAERI collaborative program on fusion neutronics. This simulation, achieved by cyclic movement of an annular Li2O test assembly relative to a stationary point source, was a step forward in better simulation of the energy and angular distributions of the incident neutron source found in tokamak plasmas. Thus, compared with other experiments previously performed with a stationary point source, the uncertainties (that are system dependent) in calculating important neutronics parameters, such as tritium production rate (TPR), will be more representative of those anticipated in a fusion reactor. The rectangular annular assembly used is 1.3 × 1.3 m and 2.04 m long with a square cavity of 0.42 × 0.42 m cross section where the simulated line source (2 m long) is located axially at the center. To characterize the incident neutron source, flux mapping with foil activation measurements was performed in the axial direction (Z = −100 cm to Z = 100 cm) at the front surface of the assembly in the cavity with the annular blanket in place, and comparison was made to the bare line-source case (without annular blanket). Three phases of experiments were performed. In Phase-IIIA, a 1.5-cm-thick stainless steel first wall was used. An additional 2.45-cm-thick carbon layer was added in Phase-IIIB, and a large opening (42.55 × 37.6 cm) was made at one side at the center of the annular assembly in Phase-IIIC. Calculations were performed independently by the United States and JAERI for many measured items that included TPR from 6Li(T6), 7Li(T7), in-system spectrum measurements, and various activation measurements. In this paper, the calculated-to-measured values for the aforementioned measured items are given, as obtained separately by the United States and JAERI. In addition, the mean value of the prediction uncertainties of the local and line-integrated TPR and the associated standard deviations are given based on the calculational and experimental results obtained in all the experiments.