ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Z. Youssef, A. Kumar, M. A. Abdou, Y. Watanabe, M. Nakagawa, K. Kosako, T. Mori, Y. Oyama, C. Konno, Y. Ikeda, H. Maekawa, T. Nakamura
Fusion Science and Technology | Volume 28 | Number 2 | September 1995 | Pages 243-272
Technical Paper | Fusion Neutronics Integral Experiments — Part II / Blanket Engineering | doi.org/10.13182/FST95-A30645
Articles are hosted by Taylor and Francis Online.
The integral experiments and postanalyses performed in Phase IIC of the U.S. Department of Energy (U.S. DOE)/Japan Atomic Energy Research Institute (JAERI) collaborative program on fusion neutronics focused on test blankets that include the actual heterogeneities found in several blanket designs. In one arrangement, multi-layers of Li2O and beryllium were placed in an edge-on, horizontally alternating configuration, and in the second arrangement, vertical water coolant channels were deployed. The main objective has been to examine the accuracy of predicting key parameters such as tritium production rate (TPR), in-system spectrum, and other reaction rates around these heterogeneities and to experimentally verify the enhancement in TPR by beryllium in the first experiment. The prediction accuracy was examined in terms of calculated-to-experimental values (c/e)i of the neutronics parameters at several spatial locations. Average local (c/e)i values were statistically calculated for TPR from Li-6 (T6) and from Li-7 (T7) in addition to quantifying the prediction uncertainties in the line-integrated TPR. A relationship was developed between the prediction uncertainty in the integrated TPR and the corresponding values in the total breeding zone. This relationship enabled us to identify which subzone contributes the most to the prediction uncertainty in the overall integrated TPR.