ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Z. Youssef, A. Kumar, M. A. Abdou, Y. Watanabe, M. Nakagawa, K. Kosako, T. Mori, Y. Oyama, C. Konno, Y. Ikeda, H. Maekawa, T. Nakamura
Fusion Science and Technology | Volume 28 | Number 2 | September 1995 | Pages 243-272
Technical Paper | Fusion Neutronics Integral Experiments — Part II / Blanket Engineering | doi.org/10.13182/FST95-A30645
Articles are hosted by Taylor and Francis Online.
The integral experiments and postanalyses performed in Phase IIC of the U.S. Department of Energy (U.S. DOE)/Japan Atomic Energy Research Institute (JAERI) collaborative program on fusion neutronics focused on test blankets that include the actual heterogeneities found in several blanket designs. In one arrangement, multi-layers of Li2O and beryllium were placed in an edge-on, horizontally alternating configuration, and in the second arrangement, vertical water coolant channels were deployed. The main objective has been to examine the accuracy of predicting key parameters such as tritium production rate (TPR), in-system spectrum, and other reaction rates around these heterogeneities and to experimentally verify the enhancement in TPR by beryllium in the first experiment. The prediction accuracy was examined in terms of calculated-to-experimental values (c/e)i of the neutronics parameters at several spatial locations. Average local (c/e)i values were statistically calculated for TPR from Li-6 (T6) and from Li-7 (T7) in addition to quantifying the prediction uncertainties in the line-integrated TPR. A relationship was developed between the prediction uncertainty in the integrated TPR and the corresponding values in the total breeding zone. This relationship enabled us to identify which subzone contributes the most to the prediction uncertainty in the overall integrated TPR.