ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y.-Z. Wei, K. Takeshita, M. Shimizu, M. Kumagai, Y. Takashima, S. Matsumoto
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1585-1590
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30638
Articles are hosted by Taylor and Francis Online.
Deactivation of a hydrophobic Pt/SDBC catalyst for the H2/HTO isotopic exchange reaction used to remove tritium from the waste water generated in a nuclear-fuel reprocessing plant has been studied experimentally. The catalyst was poisoned reversibly by a small amount of HN03 and could be regenerated by washing with water followed by drying in an inert gas. As a countermeasure against this poisoning, the neutralization of the waste water was found to be effective. The presence of I2 in the waste water caused a sharp decrease in the activity of the catalyst, due to the irreversible adsorption of I2 onto the catalyst surface. The I2 poisoning could be prevented by the conversion of I2 into I− or IO3− by neutralization or redox reaction. TBP and the neutral nitrate salts of fission products such as Sr(NO3)2 showed negligible poisoning effects on the catalyst.