ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kenji Takeshita, Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Masami Shimizu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1572-1578
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30636
Articles are hosted by Taylor and Francis Online.
The application of H2/HTO isotopic exchange method to the tritium recovery at reprocessing plants was investigated. The size of multiunit exchange column was evaluated numerically for the recovery of tritium from the waste water containing a main impurity, HNO3. The Pt-catalyst packed in the exchange column undergoes weak poisoning by HN03. However, the exchange efficiency of catalyst bed η c is maintained at 0.75 even in the presence of 0.1 mol/l HNO3. As the HNO3 concentration in the waste water is estimated as the order of 10−2 mol/l, the column size is little affected by the HNO3 poisoning. The height and diameter of exchange column required for recovering 99% of tritium generated in a 4 t/d reprocessing plant (recovery efficiency ɛ=0.99) are evaluated as about 6m and 0.63m, respectively. When the tritium concentration in the waste gas is depleted below the environmental protection standard (ɛ=0.9999996), they are evaluated as about 19m and 0.57m, respectively.