ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kenji Takeshita, Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Masami Shimizu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1572-1578
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30636
Articles are hosted by Taylor and Francis Online.
The application of H2/HTO isotopic exchange method to the tritium recovery at reprocessing plants was investigated. The size of multiunit exchange column was evaluated numerically for the recovery of tritium from the waste water containing a main impurity, HNO3. The Pt-catalyst packed in the exchange column undergoes weak poisoning by HN03. However, the exchange efficiency of catalyst bed η c is maintained at 0.75 even in the presence of 0.1 mol/l HNO3. As the HNO3 concentration in the waste water is estimated as the order of 10−2 mol/l, the column size is little affected by the HNO3 poisoning. The height and diameter of exchange column required for recovering 99% of tritium generated in a 4 t/d reprocessing plant (recovery efficiency ɛ=0.99) are evaluated as about 6m and 0.63m, respectively. When the tritium concentration in the waste gas is depleted below the environmental protection standard (ɛ=0.9999996), they are evaluated as about 19m and 0.57m, respectively.