ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Arthur Nobile, Thomas Bieniewski, Kandy Frame, Robert Little, Kane Fisher
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1558-1565
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30634
Articles are hosted by Taylor and Francis Online.
A reaction engineering approach was used to design a SAES St 198 metal getter reactor for a glovebox detritiation system. The detritiation system will be used to decontaminate and decommission an Li(D,T)-contaminated glovebox previously used in the U.S. nuclear weapons program. The approach involved development of a model that calculates reactor breakthrough curves as a function of various reactor physical parameters. Experiments involving flow of deuterium in nitrogen through a small metal getter reactor validated the model. The model was then used to investigate the effects of temperature, getter pellet size, reactor diameter, and reactor volume on the reactor performance. The resulting design was a 7 cm diam. by 40 cm long cylindrical reactor that operates at 250 °C, and is filled with 5 kg of as-received SAES St 198 getter pellets. The reactor handles a flow rate of 100 L/min. An St 909 getter reactor was used upstream of the St 198 reactor for impurity removal and water decomposition. The glovebox cleanup system design and getter reactor mechanical design are discussed.