ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K.J. Maynard, N.P. Kherani, W.T. Shmayda
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1546-1551
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30632
Articles are hosted by Taylor and Francis Online.
The nitridation of Zr2Fe has been investigated with respect to its performance as a getter for detritiation of N2 gas streams. At temperatures of 150–550°C, Zr2Fe reacts with N2 at rates dx/dt(in Zr2FeNx) which follow the Arrhenius equation with activation energy Q = 35 kJ/mole. A maximum nitrogen concentration of x = 0.9 has been obtained in this study. In the presence of significant inventory of nitrogen, Zr2Fe remains an effective getter material for detritiation of process streams. As nitrogen inventory in the Zr2Fe increases, the getter performance, as measured by purification factors, is degraded somewhat, leading to a decrease in the maximum usable flow rate of the getter bed.