ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
K.J. Maynard, N.P. Kherani, W.T. Shmayda
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1546-1551
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30632
Articles are hosted by Taylor and Francis Online.
The nitridation of Zr2Fe has been investigated with respect to its performance as a getter for detritiation of N2 gas streams. At temperatures of 150–550°C, Zr2Fe reacts with N2 at rates dx/dt(in Zr2FeNx) which follow the Arrhenius equation with activation energy Q = 35 kJ/mole. A maximum nitrogen concentration of x = 0.9 has been obtained in this study. In the presence of significant inventory of nitrogen, Zr2Fe remains an effective getter material for detritiation of process streams. As nitrogen inventory in the Zr2Fe increases, the getter performance, as measured by purification factors, is degraded somewhat, leading to a decrease in the maximum usable flow rate of the getter bed.