ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Takumi Hayashi, Masayuki Yamada, Takumi Suzuki, Yuji Matsuda, Kenji Okuno
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1503-1508
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30625
Articles are hosted by Taylor and Francis Online.
A new tritium removal system using gas separation membranes has been studied to develop more compact and cost-effective system for a fusion reactor. To obtain necessary parameters, which are directly scale able to the ITER Atmospheric Detritiation System, the basic tritium recovery performance was investigated with a scaled polyimide membrane module (hollow-filament type : 10 m3/hr ) loop. The result shows that the H2 recovery ratio from N2 or Air was more than 99 % or about 97 %, respectively, at flow rate ratio of permeated/feed =0.1, feed & permeated side pressures = 2580 & 80 torr, and module temp. = 293 K. Tritium (HT) recovery function was almost the same of H2 recovery, even though the total hydrogen concentration was a few ppm in the feed of module. H2O recovery performance was better than hydrogen recovery. These recovery functions were improved effectively decreasing the pressure ratio of permeated/feed of module.