ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
K. Hasegawa, K. Horii, M. Matsuyama, K. Watanabe
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1497-1502
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30624
Articles are hosted by Taylor and Francis Online.
The rate of the UV-stimulated HT oxidation was studied in H2(HT)-O2-O3 atmospheres with excess O3. The concentration of HTO increased linearly with UV irradiation time. The formation rate of HTO was estimated to be 3.4 × 102 Bq cm−3 s−1, which was about 14000 times greater than that of the UV-stimulated HT oxidation in the H2(HT)-O2 atmosphere. Namely the excess O3 greatly assisted the UV-stimulated HT oxidation. The HTO formation obeyed the half order kinetics to hydrogen pressure and 0.7 order with respect to photon flux. Computer simulation consisting of 33 elementary reactions was employed to make clear the mechanism of the HT oxidation. The computer simulation reproduced the same hydrogen pressure and photon flux dependences as the experimental results. It was revealed that the main path for HTO formation is as follows: 1) HT oxidation is initiated by photolysis of O3 to O(1D) radicals; 2) O(1D) radicals react with H2O(HT) to form OH(OT) radicals; 3) OH(OT) radicals produce H2O(HTO) by the reaction with H2(HT). On the basis of computer analysis, it is concluded that the considerable increase in the rate of HTO formation is due to the increase in O(1D) production in the presence of O3. The present results suggest that the O3-assisted UV-stimulated HT oxidation is expected to be applicable to non-catalytic oxidation of tritium in thermonuclear fusion reactors.