ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R.A.H. Edwards, P. Pacenti
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1478-1484
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30621
Articles are hosted by Taylor and Francis Online.
Detriation studies are critical for assessing the feasibility and costs of the ITER disposal plan for tritiated waste. A flexible apparatus has been commissioned for studying the detritiation of hard waste samples, by heating, melting, or dissolving them in molten metal. It is installed in a new laboratory approved for the simultaneous handling of tritium and beryllium. R.F. heating means the specimen temperature is limited only by the crucible material. A filter confines beryllium contamination to the silica glass specimen tube. There is independent control of carrier gas flow rate and pressure at any value between 10−7 mbar and 1 bar. All tubing is warmed to allow the use of wet carrier gases, and to reduce tritium memory. No organic materials are used. A specially constructed low-memory bakable ionization chamber and all-glass bubbler-set enable sensitive measurements of the tritium outgassing with minimised memory effects.