ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R.A.H. Edwards, P. Pacenti
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1478-1484
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30621
Articles are hosted by Taylor and Francis Online.
Detriation studies are critical for assessing the feasibility and costs of the ITER disposal plan for tritiated waste. A flexible apparatus has been commissioned for studying the detritiation of hard waste samples, by heating, melting, or dissolving them in molten metal. It is installed in a new laboratory approved for the simultaneous handling of tritium and beryllium. R.F. heating means the specimen temperature is limited only by the crucible material. A filter confines beryllium contamination to the silica glass specimen tube. There is independent control of carrier gas flow rate and pressure at any value between 10−7 mbar and 1 bar. All tubing is warmed to allow the use of wet carrier gases, and to reduce tritium memory. No organic materials are used. A specially constructed low-memory bakable ionization chamber and all-glass bubbler-set enable sensitive measurements of the tritium outgassing with minimised memory effects.