ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Peter J. Allsop, C. Colin Barfoot
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1445-1450
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30615
Articles are hosted by Taylor and Francis Online.
Tritiated heavy water (DTO) accumulates in the process systems of a CANDU®a reactor due to neutron capture by the heavy-water moderator and coolant. After twelve years of service, the moderator in the Point Lepreau Generating Station has reached approximately 1.6 TBq/kg, and the total inventory exceeds 300 PBq. Point Lepreau uses nine desiccant dryers to control airborne heavy water and tritium. Ranging in size from 1 000 m3/h to 6 800 m3/h, the majority are single-bed, cocurrent-regenerated units filled with 13X or 4A molecular sieve. These dryers have operated almost continuously for twelve years without a significant breakdown. During the last thirteen years, their availability has exceeded 99% and they have routinely dried air to a dew-point temperature of −60°C or below. Tritium emissions from the dried areas in the reactor building remain a small fraction of the tritium released into the reactor building. The keys to the success of this detritiation system are the mechanical simplicity of the dryers, the versatility of the ventilation system, a comprehensive preventative-maintenance program, and an advanced control system unique to Point Lepreau. In this paper the layout of the Point Lepreau vapour-recovery system is described and operating performance discussed. This includes a comparison of the Point Lepreau dryers to earlier designs, a description of the advanced control system, and a discussion of the operating experience and philosophy. Performance data for the system under various operating conditions are presented, including a description of operating problems caused by volatile organics released during maintenance operations. Recommendations for how this experience might be applied to a fusion power reactor are made.