ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Peter J. Allsop, C. Colin Barfoot
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1445-1450
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30615
Articles are hosted by Taylor and Francis Online.
Tritiated heavy water (DTO) accumulates in the process systems of a CANDU®a reactor due to neutron capture by the heavy-water moderator and coolant. After twelve years of service, the moderator in the Point Lepreau Generating Station has reached approximately 1.6 TBq/kg, and the total inventory exceeds 300 PBq. Point Lepreau uses nine desiccant dryers to control airborne heavy water and tritium. Ranging in size from 1 000 m3/h to 6 800 m3/h, the majority are single-bed, cocurrent-regenerated units filled with 13X or 4A molecular sieve. These dryers have operated almost continuously for twelve years without a significant breakdown. During the last thirteen years, their availability has exceeded 99% and they have routinely dried air to a dew-point temperature of −60°C or below. Tritium emissions from the dried areas in the reactor building remain a small fraction of the tritium released into the reactor building. The keys to the success of this detritiation system are the mechanical simplicity of the dryers, the versatility of the ventilation system, a comprehensive preventative-maintenance program, and an advanced control system unique to Point Lepreau. In this paper the layout of the Point Lepreau vapour-recovery system is described and operating performance discussed. This includes a comparison of the Point Lepreau dryers to earlier designs, a description of the advanced control system, and a discussion of the operating experience and philosophy. Performance data for the system under various operating conditions are presented, including a description of operating problems caused by volatile organics released during maintenance operations. Recommendations for how this experience might be applied to a fusion power reactor are made.