ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kuniaki Watanabe1), Masanori Hara1), Masao Matsuyama1), Isao Kanesaka2), Toshiki Kabutomori3)
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1437-1442
Tritium Storage, Distribution, and Transportation | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30614
Articles are hosted by Taylor and Francis Online.
The stability of ZrNi and ZrCo to heat cycles in hydrogen atmosphere was studied through changes in absorption-desorption characteristics and in crystallo-graphic structures. ZrCo easily lost its absorption- desorption capacity of hydrogen below 30 heat cycles between room temperature and a given temperature in a range of 400 ∼600 °C. X-ray diffraction analysis showed that ZrCoH3 initially formed decomposed to ZrH2+ ZrCo2. On the other hand, ZrNi was more durable than ZrCo to the similar heat cycles. But, it was found that the absorption-desorption characteristics was degraded by heat cycles over 500. The X-ray analysis showed that ZrNi also dispropor-tionated to ZrH2 and ZrNi3. The difference in the stabilities between the two materials appears to be due to the difference in crystallographic nature upon formation of the respective hydrides.