ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A. Busigin, C.J. Busigin, J.R. Robins, K.B. Woodall, D.G. Bellamy, C. Fong, K. Kalyanam, S.K. Sood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1312-1316
Design, Operation, and Maintenance of Tritium System | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30592
Articles are hosted by Taylor and Francis Online.
A low inventory Tritium Purification System (TPS) has just been installed at the Princeton Plasma Physics Laboratory (PPPL). The TPS was designed specifically for PPPL, based on their specifications for exhaust gases. The generic design, however, can easily be modified to accept a large variety of input conditions. The Princeton system is designed to have a total tritium inventory of approximately 0.5 g while producing pure product streams consisting of H2, D2, and T2. The purpose of the system is to separate and recycle unburnt tritium from the TFTR and to produce hydrogen and deuterium streams that are free of tritium. These streams can be disposed by stacking, thus eliminating the need to create large volume waste streams that are contaminated with tritium and that must be managed for permanent disposal. This paper will discuss the installation, the modifications and preliminary results of operation of this system at Princeton.