ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yumi Yaita1, Shigeru O'hira, Kenji Okuno
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1294-1298
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30589
Articles are hosted by Taylor and Francis Online.
Hydrogen retention property on isotropic graphite was studied by exposure with a high flux atomized D/T particles. From the analysis of thermal desorption spectra it is clarified that deuterium implanted to graphite existed in two different states, one was that in a trap site the other was that of C-D bond. The amount of deuterium retained in graphite was in proportion to a half power of total incident fluence and no saturation was observed up to 1026 atoms·m−2. The total hydrogen isotope retention in the sample exposed to atomized D/T particles with total incident fluence of 1025 – 1026 atoms·m−2 were in the range of 1 × 1022−4 × 1022 atoms·m−2.1Visiting researcher from Toshiba Co.