ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M.A. Lomidze, A.E. Gorodetsky, A.P. Zakharov
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1211-1216
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30574
Articles are hosted by Taylor and Francis Online.
In the model two states for accumulated hydrogen (soluble and molecular) are suggested. Under ion irradiation three reactions (events) take place: recombination of soluble hydrogen on irradiated surface; accumulation of molecular hydrogen; molecular percolation. The first reaction describes recombination under and after irradiation. The second reaction describes molecular hydrogen accumulation as statistical packing of the “traps”. The third one describes molecular percolation as a capturing of one more incoming particle in already packed “trap”, that is accompanied by the reemission of H2, by the devastation of the “trap”, and by the increasing of the irradiated surface. Under steady state for molecular accumulation and surface formation, recombination flux approaches the value of incoming flux and no percolation acts take place. Molecular accumulation approaches the steady state prompter than surface formation. The cross sections for (helium/hydrogen) emission changing over hydrogen to helium beam and vice versa were calculated. Simulation of the model coincides with the experimental data of hydrogen retention, reemission, and post-implanted release.