ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kaname Kizu, Keiji Miyazaki, Tetsuo Tanabe
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1205-1210
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30573
Articles are hosted by Taylor and Francis Online.
A precise hydrogen permeation experiment for beryllium was conducted at a temperature ranging from 735 to 1000 K under hydrogen gas pressure of 101 to 103 Pa. Diffusion coefficient and permeation coefficient were determined from the steady state penneation and time transient penneation independently. The steady state penneation rate was proportional to the square root of H2 pressure and the time sequence of penneation rate agreed well with theoretical one, indicating that the penneation controlled by bulk diffusion. The temperature dependencies of the penneation coefficients (Φ) and diffusion coefficients (D) were respectively,Φ=(1.0±0.1)×10−6exp[−73±20(kJ/mol)/RT] (mol·m−1·s−1·Pa1/2),D=(1.3±0.1)×10−7exp[59±20(kJ/mol)/RT] (m2·s−1).Solubility calculated from the relation Φ=DS wasS=7.1 exp[−14(kJ/mol)/RT] (mol·m−3·Pa−1/2).