ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Yuji Hatano, Toshio Maetani, Masayasu Sugisaki
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1182-1187
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30569
Articles are hosted by Taylor and Francis Online.
The surface barrier effect on tritium permeation through SUS-316 stainless steel was characterized with Auger electron spectroscopy for the surfaces which had been confirmed to have different barriers from our previous study. The surface which was prepared by heat treatment at 1273K for 1 hr in vacuum(10−4 Pa) was not contaminated with oxygen and carbon but covered uniformly with a large amount of sulfur. The surface exposed to air at room temperature after the vacuum annealing was covered with duplex oxide layers: the top layer consisted of iron oxide and the inner layer consisted of chromium, iron and nickel oxides. The iron oxide in the top layer was easily reduced with hydrogen gas at elevated temperatures but inner oxide layer was not completely reduced under the present conditions. These results were correlated to the surface barrier effect on tritium permeation based on our previous experimental results concerning the dissolution rate of gaseous tritium into stainless steel.