ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
V.L. Arbuzov, V. B. Vykhodets, G. A. Raspopova
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1127-1131
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30558
Articles are hosted by Taylor and Francis Online.
The interaction of radiation-induced defects with deuterium atoms at room tenperature was studied for commercial vanadium, V-H and V-D alloys. During a 700 keV D+ bombardment the accumulation of D in the irradiated area was measured by means of NRA using the reaction D(d,p)T. It was shown that in the irradiated area of the V-D alloys (0.01–0.1 at .% D) the D concentration depends on both the fluence and the alloy composition. As the fluence is increased, the accumulated amount saturates. The saturation level depends on the D concentration and is 3 to 6 times as high as the D concentration in the bulk. The D segregation is due to the formation of immobile or low-mobile “D atom — radiation defect” conplexes. At the same time free D atoms are almost immediately redistributed in the bulk of the sample. A complex deuterium-protium segregation in V-D and V-H alloys under D+ bombardment was studied too. The accumulation of implanted deuterium in the irradiation-damaged area was examined for alloys with a high (0.6–2.65 at .% H) content of 1H hydrogen isotope. It is shown that the implant accumulation level is indepedent of the bombardment dose but is determined by the content of “free” protium in the alloys: the higher the protium concentration, the lower the accumulation level.