ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
R. A. Anderl, J. D. Baker, G. L. Bourne, R. J. Pawelko
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1114-1119
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30556
Articles are hosted by Taylor and Francis Online.
Tritium and helium release behavior have been measured for Be specimens irradiated at 75°C in the Advanced Test Reactor (ATR) to a fast neutron fluence of 5×1022 n/cm2. Stepped-isothermal anneal experiments were conducted from room temperature to above the melting point of Be, with the temperature steps varied from one experiment to the other. In-line ion chambers and quadrupole mass spectrometers were used to measure the gases released to an Ar process gas stream flowing across a heated specimen. Gases released from the specimens included H2, 3He, 4He, and tritium as HT and T2. Release of the hydrogenic and tritium gases were observed to be concurrent with the release of helium, providing direct evidence of these gases in microscopic helium bubbles in the irradiated Be. Tritium and helium release kinetics were dependent on the magnitude of the temperature steps between 600°C and 800°C.