ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
P. Agg, J.P. Krasznai, A.B. Antoniazzi, R.E. Massey, B. Fishbein, R. Mowat
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1097-1103
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30553
Articles are hosted by Taylor and Francis Online.
The behaviour of tritium in the body, as a result of intakes from contact with tritium contaminated surfaces and the subsequent radiation dose impact, is dependent on the nature of the tritium species. Research over the past few years has yielded important insight into the nature of tritiated species on surfaces exposed to elemental tritium. A significant drawback to understanding the relationship between tritium exposure and dose however is that most surface characterization data, reported in the literature, was generated at high temperature, whereas, exposure to tritiated surfaces occurs mostly at ambient temperature. In this paper we describe the results of characterization studies carried out at both ambient and high temperature. The well characterized stainless steel specimens were subsequently used in animal exposures.