ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
L. Rodrigo
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1067-1072
Analysis and Accountancy | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30548
Articles are hosted by Taylor and Francis Online.
The Jesse effect — the effect of common gaseous impurities on the ionization yield in noble gases, — was investigated as a function of the impurity concentration. Experiments were conducted using a specially constructed parallel-plate ionization chamber. A solid 63Ni, pure-beta emitter was used as the radiation source. Results showed a sharp increase in the ionization yield in He at low impurity concentrations (<∼1000 ppm) followed by a plateau at high concentrations (>∼4000 ppm) for all common impurity gases investigated. At the plateau, the ionization yield was found to be approximately 40–50% higher than the value obtained with ultra-high-pure He. According to these data, the magnitude of the tritium concentration measurement error associated with ionization chambers can be as high as 40–50% if common impurities are present in the He carrier. Since tritium itself is a Jesse effect-causing impurity in He, the calibration factor for a given ionization chamber will depend on the tritium concentration in He up to ∼350 TBq/m3. Only small changes in the ionization yield were observed for Ar. Therefore, common impurities will not impede the measurement of tritium in Ar with ionization chambers.