ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. Rodrigo
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1067-1072
Analysis and Accountancy | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30548
Articles are hosted by Taylor and Francis Online.
The Jesse effect — the effect of common gaseous impurities on the ionization yield in noble gases, — was investigated as a function of the impurity concentration. Experiments were conducted using a specially constructed parallel-plate ionization chamber. A solid 63Ni, pure-beta emitter was used as the radiation source. Results showed a sharp increase in the ionization yield in He at low impurity concentrations (<∼1000 ppm) followed by a plateau at high concentrations (>∼4000 ppm) for all common impurity gases investigated. At the plateau, the ionization yield was found to be approximately 40–50% higher than the value obtained with ultra-high-pure He. According to these data, the magnitude of the tritium concentration measurement error associated with ionization chambers can be as high as 40–50% if common impurities are present in the He carrier. Since tritium itself is a Jesse effect-causing impurity in He, the calibration factor for a given ionization chamber will depend on the tritium concentration in He up to ∼350 TBq/m3. Only small changes in the ionization yield were observed for Ar. Therefore, common impurities will not impede the measurement of tritium in Ar with ionization chambers.