ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. E. Nasise, C. R. Walthers, R. W. Basinger
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1055-1060
Analysis and Accountancy | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30546
Articles are hosted by Taylor and Francis Online.
A safe metal-hydride “self-assaying” tritium storage bed, featuring accurate tritium assaying measurements is being designed, built, and tested at the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory (LANL) for the International Thermonuclear Experimental Reactor (ITER) program. Time consuming inventory operations can be shortened by utilizing “self-assaying” tritium storage beds. Design considerations, calculations, problems, and construction details of the bed are presented. Sensitivity, predictability, and simplicity are optimized in this design by utilizing thermal radiation as the primary mode of heat transfer. Thermal analysis calculations have shown that the design may provide 15 times the ITER required sensitivity atflill capacity of 150 gT.