ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. Trivedi, R.B. Richardson, D. Galeriu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 982-987
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30533
Articles are hosted by Taylor and Francis Online.
Tritiated watero (HTO) represents the mosl important occupational and environmental exposures to tritium, as far as radiation protection is concerned We have studied the dynamics of HTO and organically bound tritium* (OBT) in urine, feces and blood from male workers at 100–300 d following an acute intake of HTO. Blood and cumulative 24 h urine and fecal samples were collected and analyzed for HTO and OBT. The activity concentrations oi HTO in urine and HTO in feces were in equilibrium and were representative of HTO in the body water (HTO in blood). The ratio of bound tritium per gram hydrogen (Bq·H−1) in organic matter in feces (OBTfeces) to urine (OBTurine) was 1.0 ± 0.1. Similarly, the ratios of OBTblood to OBTurine and OBTblood to OBTfeces were 0.9 ± 0.2 and 1.1 ± 0.2, respectively. These results suggest that, providing an equilibrium condition exists, a measurement of the tritium activity per unit mass of organic matter in urine or feces can provide an assessment of the specific activity of tritium in the organic fraction ol the soft tissue. The activity concentrations of HTO and OBT in urine samples, from a few days up to 300 d post-exposure, were examined for the clearance kinetics of HTO in urine and OBT in urine. The early presence of OBT in urine indicated that a portion of tritium from the ingested HTO is rapidly fixed into organic constituents of the body. The half-life for the longer-term component of OBT in urine is comparable to the half-life for the longer-term component of HTO in urine. This close relationship between the longer-term excretion of HTO in urine and OBT in urine suggests that most of the HTO produced in its longer-term component is a by-product of metabolized OBT. This work has demonstrated that OBT is excreted in urine in all examinations, up to 300 d post-exposure to HTO, and that a fraction of the metabolized OBT is also excreted in feces.