ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
A. Trivedi, R.B. Richardson, D. Galeriu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 982-987
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30533
Articles are hosted by Taylor and Francis Online.
Tritiated watero (HTO) represents the mosl important occupational and environmental exposures to tritium, as far as radiation protection is concerned We have studied the dynamics of HTO and organically bound tritium* (OBT) in urine, feces and blood from male workers at 100–300 d following an acute intake of HTO. Blood and cumulative 24 h urine and fecal samples were collected and analyzed for HTO and OBT. The activity concentrations oi HTO in urine and HTO in feces were in equilibrium and were representative of HTO in the body water (HTO in blood). The ratio of bound tritium per gram hydrogen (Bq·H−1) in organic matter in feces (OBTfeces) to urine (OBTurine) was 1.0 ± 0.1. Similarly, the ratios of OBTblood to OBTurine and OBTblood to OBTfeces were 0.9 ± 0.2 and 1.1 ± 0.2, respectively. These results suggest that, providing an equilibrium condition exists, a measurement of the tritium activity per unit mass of organic matter in urine or feces can provide an assessment of the specific activity of tritium in the organic fraction ol the soft tissue. The activity concentrations of HTO and OBT in urine samples, from a few days up to 300 d post-exposure, were examined for the clearance kinetics of HTO in urine and OBT in urine. The early presence of OBT in urine indicated that a portion of tritium from the ingested HTO is rapidly fixed into organic constituents of the body. The half-life for the longer-term component of OBT in urine is comparable to the half-life for the longer-term component of HTO in urine. This close relationship between the longer-term excretion of HTO in urine and OBT in urine suggests that most of the HTO produced in its longer-term component is a by-product of metabolized OBT. This work has demonstrated that OBT is excreted in urine in all examinations, up to 300 d post-exposure to HTO, and that a fraction of the metabolized OBT is also excreted in feces.