ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Trivedi, R.B. Richardson, D. Galeriu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 982-987
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30533
Articles are hosted by Taylor and Francis Online.
Tritiated watero (HTO) represents the mosl important occupational and environmental exposures to tritium, as far as radiation protection is concerned We have studied the dynamics of HTO and organically bound tritium* (OBT) in urine, feces and blood from male workers at 100–300 d following an acute intake of HTO. Blood and cumulative 24 h urine and fecal samples were collected and analyzed for HTO and OBT. The activity concentrations oi HTO in urine and HTO in feces were in equilibrium and were representative of HTO in the body water (HTO in blood). The ratio of bound tritium per gram hydrogen (Bq·H−1) in organic matter in feces (OBTfeces) to urine (OBTurine) was 1.0 ± 0.1. Similarly, the ratios of OBTblood to OBTurine and OBTblood to OBTfeces were 0.9 ± 0.2 and 1.1 ± 0.2, respectively. These results suggest that, providing an equilibrium condition exists, a measurement of the tritium activity per unit mass of organic matter in urine or feces can provide an assessment of the specific activity of tritium in the organic fraction ol the soft tissue. The activity concentrations of HTO and OBT in urine samples, from a few days up to 300 d post-exposure, were examined for the clearance kinetics of HTO in urine and OBT in urine. The early presence of OBT in urine indicated that a portion of tritium from the ingested HTO is rapidly fixed into organic constituents of the body. The half-life for the longer-term component of OBT in urine is comparable to the half-life for the longer-term component of HTO in urine. This close relationship between the longer-term excretion of HTO in urine and OBT in urine suggests that most of the HTO produced in its longer-term component is a by-product of metabolized OBT. This work has demonstrated that OBT is excreted in urine in all examinations, up to 300 d post-exposure to HTO, and that a fraction of the metabolized OBT is also excreted in feces.