ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R.A. Surette, M.J. Wood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 957-963
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30529
Articles are hosted by Taylor and Francis Online.
We have investigated various commercially available tritium-surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces. The monitors tested were the Berthold LB1210 with both a LB6255 windowless detector and a BZ-200 XK-P xenon counter, a PC-55 windowless proportional counter from Nuclear Measurement Corporation, a Whitlock VSC 5000 surface-contamination monitor, and the Hurfurt “Microcont” surface monitor. A prototype E-perm® electret surface contamination monitor and MeltiLex™, a wax-based plastic scintillant were also evaluated for measuring tritium-surface contamination. None of the methods or instruments evaluated were more sensitive than the swipe/liquid-scintillation counting (LSC) method. Samples measured with open-window proportional counters were, in general, less than half as sensitive, but had the advantages of having the results available almost immediately and requiring minimal sample preparation. Instruments that measure surface contamination directly are sensitive and convenient but the measurement includes some nonremovable component that would not contribute to a person's dose. Instruments that use a detector with any type of window are too insensitive for routine workplace-surface monitoring.