ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R.A. Surette, M.J. Wood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 957-963
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30529
Articles are hosted by Taylor and Francis Online.
We have investigated various commercially available tritium-surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces. The monitors tested were the Berthold LB1210 with both a LB6255 windowless detector and a BZ-200 XK-P xenon counter, a PC-55 windowless proportional counter from Nuclear Measurement Corporation, a Whitlock VSC 5000 surface-contamination monitor, and the Hurfurt “Microcont” surface monitor. A prototype E-perm® electret surface contamination monitor and MeltiLex™, a wax-based plastic scintillant were also evaluated for measuring tritium-surface contamination. None of the methods or instruments evaluated were more sensitive than the swipe/liquid-scintillation counting (LSC) method. Samples measured with open-window proportional counters were, in general, less than half as sensitive, but had the advantages of having the results available almost immediately and requiring minimal sample preparation. Instruments that measure surface contamination directly are sensitive and convenient but the measurement includes some nonremovable component that would not contribute to a person's dose. Instruments that use a detector with any type of window are too insensitive for routine workplace-surface monitoring.