ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R.A. Surette, M.J. Wood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 957-963
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30529
Articles are hosted by Taylor and Francis Online.
We have investigated various commercially available tritium-surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces. The monitors tested were the Berthold LB1210 with both a LB6255 windowless detector and a BZ-200 XK-P xenon counter, a PC-55 windowless proportional counter from Nuclear Measurement Corporation, a Whitlock VSC 5000 surface-contamination monitor, and the Hurfurt “Microcont” surface monitor. A prototype E-perm® electret surface contamination monitor and MeltiLex™, a wax-based plastic scintillant were also evaluated for measuring tritium-surface contamination. None of the methods or instruments evaluated were more sensitive than the swipe/liquid-scintillation counting (LSC) method. Samples measured with open-window proportional counters were, in general, less than half as sensitive, but had the advantages of having the results available almost immediately and requiring minimal sample preparation. Instruments that measure surface contamination directly are sensitive and convenient but the measurement includes some nonremovable component that would not contribute to a person's dose. Instruments that use a detector with any type of window are too insensitive for routine workplace-surface monitoring.