ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Rule, J. Gilbert, G. Ascione, D. Birckbichler, S. Elwood, R. Flournoy, J. Stencel, C. Tilson
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 946-950
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30527
Articles are hosted by Taylor and Francis Online.
The Tokamak Fusion Test Reactor (TFTR) facility began operations with trace tritium in July 1993. These operations consist of the delivery, storage, injection, and subsequent processing of tritium gas in support of the D-T fusion program. The tritium is transferred throughout the facility using vacuum pumping systems and expansion volumes. These systems have manipulated and processed 14.4 PBq (388,983 Ci) of tritium from July 1993 through December 1994. This paper discusses the operational health physics program with regard to the performance of maintenance on tritium contaminated systems. Data and findings are provided from maintenance situations ranging from work on small volume piping to large volume neutral beam systems. Results and comparisons of tritium contamination levels, airborne radioactivity levels, and oil concentrations are presented for these systems. Descriptions of the maintenance tasks are provided for the entire scope of work and include general information toward conceptual understanding of the maintenance conduct of operations. General procedural requirements, job planning, pre-job briefing topics, control mechanisms, techniques to reduce exposure, and lessons learned are discussed. A complete description of various types of tritium monitoring and sampling equipment is also discussed. Several types of air monitoring equipment were used during these tasks to identify the most consistent and reliable methods for detection and radiological assessments. The results of radiological measurements are described in relation to the differentiation of elemental tritium to tritium oxide in worker's breathing zones and the associated general work area. A comparison is provided to process system monitoring, system moist air purges, system contamination levels and subsequent stack emission sampling for both elemental and oxide tritium. A summary is provided to describe the relationship between elemental and oxide tritium as a result of properly planned and performed maintenance on tritium process systems.