ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
L. Rodrigo, M.J. Ivanco, J.W. Goodale, J.A. Senohrabek, L.K. Jones, L.M. Phillipi
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 940-945
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30526
Articles are hosted by Taylor and Francis Online.
The quantitative significance of surface-contamination levels determined by different methods was assessed by carrying out measurements using the wipe-assay method and a commercial surface-contamination monitor (Whitlock Vacuum Scintillation Counter (VSC)). The results were compared to the total tritium desorbed from the sample. Simple correlations between these measurements were not found. Laser-assisted desorption methods are currently being investigated to measure total tritium on surfaces. Preliminary results obtained with a Nd:YAG laser (532 nm) are reported. Only water vapor and CO2 were found in the gas released under laser irradiation by mass spectroscopy. Approximately 65–95% of the surface tritium could be desorbed from all metal samples investigated.