ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
L. Rodrigo, M.J. Ivanco, J.W. Goodale, J.A. Senohrabek, L.K. Jones, L.M. Phillipi
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 940-945
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30526
Articles are hosted by Taylor and Francis Online.
The quantitative significance of surface-contamination levels determined by different methods was assessed by carrying out measurements using the wipe-assay method and a commercial surface-contamination monitor (Whitlock Vacuum Scintillation Counter (VSC)). The results were compared to the total tritium desorbed from the sample. Simple correlations between these measurements were not found. Laser-assisted desorption methods are currently being investigated to measure total tritium on surfaces. Preliminary results obtained with a Nd:YAG laser (532 nm) are reported. Only water vapor and CO2 were found in the gas released under laser irradiation by mass spectroscopy. Approximately 65–95% of the surface tritium could be desorbed from all metal samples investigated.