ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H. Noguchi, S. Yokoyama, N. Kinouchi, M. Murata, H. Amano, M. Atarashi, Y. Ichimasa, M. Ichimasa
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 924-929
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30523
Articles are hosted by Taylor and Francis Online.
The behavior of HT and HTO in air and surface soil has been studied extensively in the chronic HT release experiment carried out at Chalk River during the summer of 1994. HTO concentrations in air moisture and soil water collected in a cultivated plot showed similar time-variations, increasing rapidly during the first and second days and becoming gradual after the first 3–4 days. The air HTO concentration decreased during and following rainfall but recovered within a day. The rainfall reduced the HTO concentrations in ridge soil water but little in furrows. Time histories of HTO concentrations in air moisture and soil water suggest that the system was near steady-state within a continuous HT release period of 12 days, in spite of the presence of rain during the period. The air HTO concentrations on clear days showed diurnal cycles that were higher during daytime than at night. The experimental field had a very complex soil regime with respect to HT deposits. The deposits to soil surface varied depending on soil conditions.