ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ove Edlund
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 846-852
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30510
Articles are hosted by Taylor and Francis Online.
A general dynamic model consisting of 14 compartments simulating the distribution of tritium into milk and its constituents in lactating dairy cows was developed. The model is calibrated to fit the results obtained in two experiments, where cows were given tritiated water in one experiment (A) and tritiated hay in the second (H) one. The model estimates the activity concentration in the whole milk and its constituents as a function of time. In the next step the COWTRI model will be fitted to a “normalized” cow for which the weight, the daily intake of organic bound hydrogen (OBH), the milk faeces- and urine production are defined. In this version of the model the normalization procedure is only performed concerning intake of OBH. The purpose with this detailed model was to estimate the contribution of the ingested tritium to OBT in milk besides the whole milk itself. From this information it will be possible to simplify the model to one organic part and one non organic part of the milk. The model needs further testing against independent data before it can be simplified for a close assessment model attributed to accidental and continuous operational releases of tritium to an environment where the exposure pathway via milk consumption has to be considered.