ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
C J Caldwell-Nichols
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 827-832
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30507
Articles are hosted by Taylor and Francis Online.
The dispersion of gases released to the environment at significant distances from the release point can be predicted using propriety computer codes. However during and after the Preliminary Tritium Experiment1,2 (PTE) at JET in 1991 comparatively high levels of tritium were measured around the buildings and also there was measurable uptake of tritium in the site cooling water. Better assessment of likely tritium concentrations resulting from discharges is required to determine if tritium would tend to concentrate close to the buildings due to the complex air flow patterns around them. Three methods have been considered, namely computational studies, wind tunnel testing and tracer release experiments. A graduated approach has been adopted as each method has its limitations, tracer experiments being particularly expensive. Computational studies indicate that under worst case conditions the maximum ground level concentrations (Bq/m·) per unit stack release rate (Bq/s) is 1.0E-4 but more generally less. The results are presented noting the limitations of this approach. To aid understanding and verify some of the results, wind tunnel tests on a model of the JET site have been undertaken and the results discussed. The need for tracer release studies is considered.