ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
H. Amano, M. Atarashi, H. Noguchi, S. Yokoyama, Y. Ichimasa, M. Ichimasa
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 803-808
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30503
Articles are hosted by Taylor and Francis Online.
Trace amounts of elemental tritium (HT) were released continuously to the surface atmosphere at a site at Chalk River Laboratories, Canada over the 12-day period 1994 July 27 to August 8. The test area consisted of four agricultural plots, each 5 m square. One plot was left in its natural state, and the other three were cultivated. Cherry tomatoes, radishes and edible Chinese mustard (Komatsuna in Japanese) were grown in the three cultivated fields. After the HT gas reached the surface of the field, some portion of it was converted into the water form (HTO) mainly by microorganisms in the soil. Then, plant absorbs HTO from both soil and air. Photosynthesized organic material in plant contains tritium,also. The main purpose of this research is to analyze the variation with time of tissue free-water tritium (TFWT) and organically bound tritium (OBT) in several plant species during the HT release. The specific activity of HTO in plants increased rapidly after the HT exposure. The HTO concentration in plant leaves almost attained its maximum value in about 10 days, even though there were several precipitation events, which decreased the soil HTO concentration. The specific activity of OBT in plants increased gradually after the start of the exposure. The OBT concentration in plants did not attain steady state over the whole exposure period of 12 days. The OBT/HTO ratio in plants increased gradually during the release. The ratio in Komatsuna leaves changed from 0.06 to 0.24 between 2 and 11 days. The production rates of OBT in plants are fitted to numerical equations.