ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Masabumi Nishikawa, Mitsuru Uetake, Ken-ichi Tanaka, Tomofumi Shiraishi
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 717-722
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30489
Articles are hosted by Taylor and Francis Online.
The tritium bred in a DT fusion reactor is taken out of its blanket using helium sweep gas. The cryosorption bed using molecular sieves or activated carbon at liquid nitrogen temperature is attractive for recovery of this tritium from the view point of adsorption capacity and pressure of tritium at release. The mass transfer coefficients required to predict the breakthrough curve are discussed in this paper. The surface difiusivity included in one of them is quantitated. Its value is dependent on the adsorption site. The rate controlling step changes with the equilibrium partial pressure of the hydrogen isotope, because the mass transfer coefficient representing the intraparticle diffusion decreases with increasing equilibrium pressure. The mass transfer coefficients in desorption are estimated to be the same as those in adsorption.