ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Masabumi Nishikawa, Mitsuru Uetake, Ken-ichi Tanaka, Tomofumi Shiraishi
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 717-722
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30489
Articles are hosted by Taylor and Francis Online.
The tritium bred in a DT fusion reactor is taken out of its blanket using helium sweep gas. The cryosorption bed using molecular sieves or activated carbon at liquid nitrogen temperature is attractive for recovery of this tritium from the view point of adsorption capacity and pressure of tritium at release. The mass transfer coefficients required to predict the breakthrough curve are discussed in this paper. The surface difiusivity included in one of them is quantitated. Its value is dependent on the adsorption site. The rate controlling step changes with the equilibrium partial pressure of the hydrogen isotope, because the mass transfer coefficient representing the intraparticle diffusion decreases with increasing equilibrium pressure. The mass transfer coefficients in desorption are estimated to be the same as those in adsorption.