ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Masabumi Nishikawa, Ken-ichi Tanaka, Mitsuru Uetake, Mikio Enoeda, Yoshinori Kawamura, Kenji Okuno
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 711-716
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30488
Articles are hosted by Taylor and Francis Online.
The effective tritium recovery system should be designed to recover tritium from DT reactor blanket sweep gas in a form easy to transfer to the main fuel cycle. The cryosorption method using a porous adsorbent at the temperature of liquid nitrogen is one of the candidate processes for extracting tritium from hydrogen-swamped helium sweep gas because it has advantages of a large recovery capacity of gaseous tritium and good releasability of recovered tritium to the next process. In order to quantify the performance of the cryosorption method in recovering hydrogen isotopes from hydrogen-swamped helium sweep gas flow, the adsorption capacity and separation factor for multicomponent hydrogen isotope mixtures in helium on molecular sieve 4A (MS4A), molecular sieve 5A (MS5A) and activated carbon at 77.4 K were measured.