ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hiroo Nakamura, Juergen Dietz, Peter Ladd
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 705-710
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30487
Articles are hosted by Taylor and Francis Online.
This paper presents considerations on basic requirements of fuelling, plasma exhaust and wall conditioning in ITER-EDA. In ITER-EDA, typical machine parameters are 1.5 GW of a fusion power and 1000 sec of a DT burn duration. Fuelling system consists of gas- and pellet injection systems. Maximum DT fuelling rate is 100 Pam3/s (pellet) to 500 Pam3/s (gas). Impurity gas(e.g. Ne, Ar) will be also injected to control divertor radiation loss. In plasma exhaust, designed value of total neutral pressure at inlet of pumping duct is 0.1 Pa to 10 Pa. Total net pumping speed of cryogenic primary pumps is about 300 m3/sec. In maximum, 90% of the regenerated fuel gases (H, D, T) from the primary cryopump will be directly back into the plasma. In wall conditioning, glow discharge cleaning (GDC) and electron cyclotron resonance discharge cleaning (ECRDC) are considered.