ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hiroo Nakamura, Juergen Dietz, Peter Ladd
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 705-710
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30487
Articles are hosted by Taylor and Francis Online.
This paper presents considerations on basic requirements of fuelling, plasma exhaust and wall conditioning in ITER-EDA. In ITER-EDA, typical machine parameters are 1.5 GW of a fusion power and 1000 sec of a DT burn duration. Fuelling system consists of gas- and pellet injection systems. Maximum DT fuelling rate is 100 Pam3/s (pellet) to 500 Pam3/s (gas). Impurity gas(e.g. Ne, Ar) will be also injected to control divertor radiation loss. In plasma exhaust, designed value of total neutral pressure at inlet of pumping duct is 0.1 Pa to 10 Pa. Total net pumping speed of cryogenic primary pumps is about 300 m3/sec. In maximum, 90% of the regenerated fuel gases (H, D, T) from the primary cryopump will be directly back into the plasma. In wall conditioning, glow discharge cleaning (GDC) and electron cyclotron resonance discharge cleaning (ECRDC) are considered.