ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
William Kuan, Mohamed A. Abdou, R. Scott Willms
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 664-671
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30480
Articles are hosted by Taylor and Francis Online.
Dynamically simulating the fuel cycle in a fusion reactor is crucial to developing a better understanding of the safe and reliable operation of this complex system. In this work, we propose a tritium processing system for ITER'S plasma exhaust. The dynamic simulation of this proposed system is then performed with the TRUFFLES (TRitiUm Fusion Fuel cycLE dynamic Simulation) model. The fuel management, storage, and fueling operations are developed and coupled with previous cryopump and fuel cleanup unit subsystems to fully realize the complete torus exhaust flow cycle. Results show that tritium inventories will vary widely depending upon reactor operation, individual subsystem and unit operation designs. A diverse collection of batch-controlled subsystems with changes in their processing parameters are simulated in this work. In particular, the effects from the fuel management subsystem's fuel reserve and tank switching times are quantified using sensitivity studies.