ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Michael A. Fütterer, Luis A. Sedano, Luciano Giancarli, Eric Proust
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 614-618
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30471
Articles are hosted by Taylor and Francis Online.
In the water-cooled liquid Pb-17Li blanket concept for DEMO the limitation of tritium permeation from the breeder material into the cooling water will be required. In order to find out on what conditions this tritium permeation remains within reasonable limits, a 1-d FEM code was developed which evaluates the tritium partial pressure in Pb-17Li, the tritium inventory in the blanket material, and the tritium permeation from the Pb-17Li into the cooling water as a function of the permeation reduction factor of a barrier and the efficiency of the tritium extraction from Pb-17Li. With a parametric study the conditions were identified which allow a permeation rate of as little as 1 g·d−1 without pushing the requirements for permeation barriers and extraction efficiencies excessively far. An example is a barrier with a permeation reduction factor of 75 together with an extractor efficiency of approximately 83%. In these conditions the expected tritium inventory is attributed to approximately one third to the martensitic blanket structure (some ten grams) while two thirds will be found in the Pb-17Li. These inventory values are two orders of magnitude lower than in solid breeder blankets and are thus not considered a critical issue.