ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Michael A. Fütterer, Luis A. Sedano, Luciano Giancarli, Eric Proust
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 614-618
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30471
Articles are hosted by Taylor and Francis Online.
In the water-cooled liquid Pb-17Li blanket concept for DEMO the limitation of tritium permeation from the breeder material into the cooling water will be required. In order to find out on what conditions this tritium permeation remains within reasonable limits, a 1-d FEM code was developed which evaluates the tritium partial pressure in Pb-17Li, the tritium inventory in the blanket material, and the tritium permeation from the Pb-17Li into the cooling water as a function of the permeation reduction factor of a barrier and the efficiency of the tritium extraction from Pb-17Li. With a parametric study the conditions were identified which allow a permeation rate of as little as 1 g·d−1 without pushing the requirements for permeation barriers and extraction efficiencies excessively far. An example is a barrier with a permeation reduction factor of 75 together with an extractor efficiency of approximately 83%. In these conditions the expected tritium inventory is attributed to approximately one third to the martensitic blanket structure (some ten grams) while two thirds will be found in the Pb-17Li. These inventory values are two orders of magnitude lower than in solid breeder blankets and are thus not considered a critical issue.