ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Michael A. Fütterer, Luis A. Sedano, Luciano Giancarli, Eric Proust
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 614-618
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30471
Articles are hosted by Taylor and Francis Online.
In the water-cooled liquid Pb-17Li blanket concept for DEMO the limitation of tritium permeation from the breeder material into the cooling water will be required. In order to find out on what conditions this tritium permeation remains within reasonable limits, a 1-d FEM code was developed which evaluates the tritium partial pressure in Pb-17Li, the tritium inventory in the blanket material, and the tritium permeation from the Pb-17Li into the cooling water as a function of the permeation reduction factor of a barrier and the efficiency of the tritium extraction from Pb-17Li. With a parametric study the conditions were identified which allow a permeation rate of as little as 1 g·d−1 without pushing the requirements for permeation barriers and extraction efficiencies excessively far. An example is a barrier with a permeation reduction factor of 75 together with an extractor efficiency of approximately 83%. In these conditions the expected tritium inventory is attributed to approximately one third to the martensitic blanket structure (some ten grams) while two thirds will be found in the Pb-17Li. These inventory values are two orders of magnitude lower than in solid breeder blankets and are thus not considered a critical issue.