ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Satoshi Fukada, Katsuhiro Fuchinoue, Masabumi Nishikawa
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 608-613
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30470
Articles are hosted by Taylor and Francis Online.
A continuous hydrogen isotope separation system using twin beds of metals or alloys is here proposed. The isotope separation system called a twin-bed periodically counter-current flow (TB-PCCF) is analytically and experimentally investigated. Palladium and LaNi4.7Al0.3 were selected based on experimental data of the isotope separation factor and the isotopic exchange rate. Numerical calculations by a plate model revealed effectiveness of the TB-PCCF method which is composed of an enriching column packed with Pd particles and a stripping column packed with LaNi4.7Al0.3 particles. A preliminary experiment was performed at the condition where absorption and desorption cycles are repeated between room temperature and 473K for Pd and 363K for LaNi4.7Al0.3 at the total reflux, and it showed possibility of the hydrogen isotope separation.