ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mikio Enoeda, Yoshinori Kawamura, Kenji Okuno, Ken-ichi Tanaka, Mitsuru Uetake, Masabumi Nishikawa
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 591-596
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30467
Articles are hosted by Taylor and Francis Online.
Experimental results showed that Q2 gas was adsorbed effectively by CMSB on an early stage of breakthrough even though CH4 exists in the inlet gas. Particularly, in the case of Q2 with low concentration of CH4, the break through curve of Q2 showed almost the same curve as in the case of pure Q2 adsorption. However, CH4 gas spilled over adsorbed Q2 in the course of CH4 break-through. This means that the CMSB will eventually lose the ability to adsorb Q2 in the final stage of adsorption. The critical time when the CMSB loses the adsorption ability depends on the inlet CH4 concentration. Analysis of the results showed that the adsorption of Q2 and CH4 mixture can be roughly described by assuming the multi-component adsorption equations for Q2 and CH4 using Langmuir's equations. It was certified that the analysis model described and predicted the experimental observations very well.