ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Colombini, S. Tosti, V. Violante, G. Simbolotti
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 573-577
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30464
Articles are hosted by Taylor and Francis Online.
The analysis of the tritium inventory in Li2O, carried out for the Safety and Environmental Assessment of Fusion Power (SEAFP) helium-cooled ceramic blanket, is based on a diffusion and desorption tritium release model. Within the specific range of breeder temperatures taken into account, desorption was the dominant mechanism so it can be defined as the rate controlling step. At steady state, the model for the tritium inventory in the solid Li2O breeder is supported by a computer code for several operating conditions. At reference conditions of breeder temperatures, by varying the mean grain radius from 1 to 5 µm, a tritium inventory from 0.5 to 2.8 g can be obtained. A helium purge gas velocity from 0.1 to 0.4 m/s gives rise to gas pressure losses from 0.22 to 0.9 MPa, which could probably be reduced by increasing the pebble diameter to 1 mm. This breeder configuration seems to ensure reactor safety.