ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
P.L. Carconi, S. Casadio, A. Moauro, L. Petrucci, C. M. Mari
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 556-560
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30461
Articles are hosted by Taylor and Francis Online.
Industrial solid state oxygen sensors, using fully stabilized zirconia as electrolyte, were modified and used to split water vapor, mixed with inert gas. Such conditions were chosen for simulating the tritium removal from the ceramic breeder materials in solid blanket fusion reactors. The single cell performances were investigated at 973 K and 200 cm3/min flow rate using argon/water vapor mixtures ranging from 100 to 700 vpm. The splitting efficiency was evaluated at 80%; steady state conditions were reached in a few minutes.