ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Boris M. Andreev, Yuriy A. Sakharovsky, Michael B. Rozenkevich, Eldar P. Magomedbekov, Yuriy S. Park, Vadim V. Uborskiy
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 511-514
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30453
Articles are hosted by Taylor and Francis Online.
The paper presents a novel universal concept of recovering tritium from water. The concept is based on a flexible link between the first stage of purification and getting tritium concentrate by catalytic isotopic exchange between water and hydrogen and the second stage, destined for recovering tritium with the concentration of 98 at.% by means of continuous isotopic exchange between hydrogen and palladium hydride. We present thermodynamic and mass exchange parameters of these processes, obtained while running pilot setups. We demonstrate that the proposed universal purification module is more efficient for separating tritium-containing mixtures of hydrogen isotopes, than the one described in literature.