ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lev F. Belovodskii, Viktor K. Gaevoy, Aleksei V. Golubev
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 470-478
Plenary Session | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30448
Articles are hosted by Taylor and Francis Online.
Physical and chemical properties of tritium (T) and its oxides (T2O, DTO, HTO) were experimentally researched; hence, the following was identified: T to T2O conversion mechanisms due to radiation oxidation and isotope exchange in the T concentration range from 10E-8 to 600 Ci/1 in gaseous media of technological equipment (air, argon, hydrogen and their mixtures); diffusion, solubility, sorption and desorption constants of T and T2O in interaction process with structural materials of technological equipment (metals, polymers); properties of T oxidation catalysts (Pt, Pd, Ni, CuO, PdO) for various gas mixtures; properties of moisture adsorbents: synthetic molecular sieve, alumogel and silica gel at different T2O specific activity; mechanisms of waste formation: gaseous, liquid, solid - when T is operated on. Based on the accomplished research the following was developed: technical requirements to technological equipment and equipment units: boxes, containers, receivers, appliances; methods and devices to extract T and T2O from gases: absorbing elements, filters, gas cleaners; facilities for safe T storage in T2O adsorbed on sieve NaA with helium-3 extraction; technologies and devices to extract T and T2O from solid wastes as well as for liquid waste solidification. The developments implemented in the T items production have reduced personnel exposure doses by∼ 50 times and T-releases to the environment by∼200 times.