ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Lev F. Belovodskii, Viktor K. Gaevoy, Aleksei V. Golubev
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 470-478
Plenary Session | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30448
Articles are hosted by Taylor and Francis Online.
Physical and chemical properties of tritium (T) and its oxides (T2O, DTO, HTO) were experimentally researched; hence, the following was identified: T to T2O conversion mechanisms due to radiation oxidation and isotope exchange in the T concentration range from 10E-8 to 600 Ci/1 in gaseous media of technological equipment (air, argon, hydrogen and their mixtures); diffusion, solubility, sorption and desorption constants of T and T2O in interaction process with structural materials of technological equipment (metals, polymers); properties of T oxidation catalysts (Pt, Pd, Ni, CuO, PdO) for various gas mixtures; properties of moisture adsorbents: synthetic molecular sieve, alumogel and silica gel at different T2O specific activity; mechanisms of waste formation: gaseous, liquid, solid - when T is operated on. Based on the accomplished research the following was developed: technical requirements to technological equipment and equipment units: boxes, containers, receivers, appliances; methods and devices to extract T and T2O from gases: absorbing elements, filters, gas cleaners; facilities for safe T storage in T2O adsorbed on sieve NaA with helium-3 extraction; technologies and devices to extract T and T2O from solid wastes as well as for liquid waste solidification. The developments implemented in the T items production have reduced personnel exposure doses by∼ 50 times and T-releases to the environment by∼200 times.